Approximating the Minmax Value of Three-Player Games within a Constant is as Hard as Detecting Planted Cliques

نویسندگان

  • Kord Eickmeyer
  • Kristoffer Arnsfelt Hansen
  • Elad Verbin
چکیده

We consider the problem of approximating the minmax value of a multiplayer game in strategic form. We argue that in 3-player games with 0-1 payoffs, approximating the minmax value within an additive constant smaller than ξ/2, where ξ = 3− √ 5 2 ≈ 0.382, is not possible by a polynomial time algorithm. This is based on assuming hardness of a version of the socalled planted clique problem in Erdős-Rényi random graphs, namely that of detecting a planted clique. Our results are stated as reductions from a promise graph problem to the problem of approximating the minmax value, and we use the detection problem for planted cliques to argue for its hardness. We present two reductions: a randomized many-one reduction and a deterministic Turing reduction. The latter, which may be seen as a derandomization of the former, may be used to argue for hardness of approximating the minmax value based on a hardness assumption about deterministic algorithms. Our technique for derandomization is general enough to also apply to related work about -Nash equilibria.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximability and Parameterized Complexity of Minmax Values

We consider approximating the minmax value of a multiplayer game in strategic form. Tightening recent bounds by Borgs et al., we observe that approximating the value with a precision of ǫ log n digits (for any constant ǫ > 0) is NP-hard, where n is the size of the game. On the other hand, approximating the value with a precision of c log log n digits (for any constant c ≥ 1) can be done in quas...

متن کامل

CS286.2 Lecture 15: Tsirelson’s characterization of XOR games

We first recall the notion of quantum multi-player games: a quantum k-player game involves a verifier V and k players P1, . . . , Pk. The verifier randomly picks an index i according to some distribution π over the set {1, . . . , Q} and sends a quantum state |φi〉 (the question) to the the players. Here |φi〉 consists of k quantum registers, |φi〉 = |φi〉P1···Pk , but it is not necessarily a produ...

متن کامل

Inapproximability of Minimum Vertex Cover

Last time we examined a generic approach for inapproximability results based on the Unique Games Conjecture. Before, we had already shown that approximating MAX-3-LIN to within a constant factor larger than 12 is NP-hard. To do this we used a tweaked version of our dictatorship test that we came up with earlier in the semester. Last time we (re)proved that approximating MAX-3-LIN to within a co...

متن کامل

On minmax theorems for multiplayer games Citation

We prove a generalization of von Neumann’s minmax theorem to the class of separable multiplayer zerosum games, introduced in [Bregman and Fokin 1998]. These games are polymatrix—that is, graphical games in which every edge is a two-player game between its endpoints—in which every outcome has zero total sum of players’ payoffs. Our generalization of the minmax theorem implies convexity of equili...

متن کامل

Stochastic Games: Existence of the Minmax

The existence of the value for stochastic games with finitely many states and actions, as well as for a class of stochastic games with infinitely many states and actions, is proved in [2]. Here we use essentially the same tools to derive the existence of the minmax and maxmin for n-player stochastic games with finitely many states and actions, as well as for a corresponding class of n-person st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012